Produk Matematika Kelas 9 SMP (Edisi Revisi 2016)

Berikut ini contoh video pelajaran Matematika Kelas 9 SMP

Detail Materi

Penemuan Rene Descartes (1596 – 1650) dalam penulisan bilangan berpangkat sangat bermanfaat bagi umat manusia, terutama dalam penulisan notasi ilmiah (penulisan bilangan besar dan penulisan bilangan kecil). Pangkat atau eksponen adalah perkalian yang diulang-ulang. Eksponen dapat ditulis dengan indeks di atas, yang akan terlihat sebagai berikut: x ^ y. Tetapi eksponen dapat juga ditulis menggunakan tanda ^: 2^3 berarti 2 ^ 3. Bilangan x disebut bilangan pokok, dan bilangan y disebut eksponen. Sebagai contoh, pada 2 ^ 3, 2 adalah bilangan pokok dan 3 eksponen. Untuk menghitung 2 ^ 3 dapat dengan cara mengalikan 3 kali terhadap angka 2. Sehingga 2 ^ 3 = 2 x 2 x 2 Hasilnya adalah 2 x 2 x 2 = 8.

Persamaan kuadrat adalah suatu persamaan polinomial berorde dua. Bentuk umum dari persamaan kuadrat adalah  dengan . Huruf-huruf a, b dan c disebut sebagai koefisien: koefisien kuadrat a adalah koefisien dari , koefisien linier b adalah koefisien dari x, dan c adalah koefisien konstan atau disebut juga suku bebas.

Menentukan akar-akar persamaan kuadrat dengan memfaktorkan artinya menyelesaikan kuadrat dengan cara mengubah persamaan kuadrat itu menjadi bentuk perkalian. Bentuk ax2 + bx + c = 0, di ubah ke bentuk a( x – x1 )( x – x2 ) = 0, a ≠ 0. Suatu perkalian bernilai nol apabila salah satu faktornya nol.

Bab Fungsi Kuadrat sebelumnya pada kurikulum 2013 tidak dipelajari.

Pada video ini mempelajari tentang tanda-tanda grafik fungsi kuadrat yang menyebabkan parabola menghadap ke atas atau ke bawah. Menghadap ke atas jika a > 0 dan menghadap ke bawah jika a < 0. Juga tentang definit positif/negatif

Pada edisi revisi 2016 Bab Transformasi dipelajari di kelas 9 sedangkan pada kurikulum 2013 dipelajari pada kelas 7, sedangkan materi yang dipelajari adalah sama.

 

Translasi adalah transformasi yang memindahkan setiap titik pada bidang menurut jarak dan arah tertentu. Jarak dan arah suatu transalasi dapat dilambangkan dengan garis berarah.

Dalam definisi lain juga dikatakan sbb: translasi (pergeseran) adalah pemindahan suatu objek sepanjang garis lurus dengan arah dan jarak tertentu.

 

Sifat-sifat Translasi:
1.      Dua refleksi berturut-turut terhadap sebuah garis merupakan suatu identitas, artinya yang direfleksikan tidak berpindah.
2.      Pengerjaan dua refleksi terhadap dua sumbu yang sejajar, menghasilkan translasi (pergeseran) dengan sifat:
Ø  Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak kedua sumbu pencerminan.
Ø  Arah translasi tegak lurus pada kedua sumbu sejajar, dari sumbu pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar bersifat tidak komutatip.
3.      Pengerjaaan dua refleksi terhadap dua sumbu yang saling tegak lurus, menghasilkaan rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua sumbu pencerminan. Refleksi terhadap dua sumbu yang saling tegak lures bersifat komutatif.
4.      Pengerjaan dua refleksi berurutan terhadap dua sumbu yang berpotongan akan menghasilkan rotasi (perputaran) yang bersifat:
Ø  Titik potong kedua sumbu pencerminan merupakan pusat perputaran.
Ø  Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu   pencerminan.
Ø  Arah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua.

Dua buah atau lebih bangun datar dikatakan sebangun jika sisi-sisi yang bersesuaian memiliki perbandingan yang sama. Khususnya dalam segitiga, definisi di atas akan dipenuhi jika segitiga memiliki sudut-sudut yang besarnya sama. Dengan kata lain, dua segitiga atau lebih dikatakan sebangun jika memiliki sudut-sudut yang besarnya sama. Konsep ini dapat digunakan untuk mencari panjang sisi-sisi pada segitiga jika diketahui panjang sisi-sisi yang lain.

Bangun ruang sisi lengkung adalah bangun ruang yang memiliki bagian berupa lengkungan (selimut atau permukaan bidang). Bangun sisi lengkung ada 3, yaitu tabung, kerucut, dan bola.

Dalam geometri, tabung atau silinder adalah bangun ruang tiga dimensi yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Tabung memiliki 3 sisi dan 2 rusuk.

Kedua lingkaran disebut sebagai alas dan tutup tabung serta persegi panjang yang menyelimutinya disebut sebagai selimut tabung.

BAB 6 BANGUN RUANG SISI LENGKUNG EDISI 2016 (Contoh Soal Tabung)

Bangun ruang sisi lengkung adalah bangun ruang yang memiliki bagian berupa lengkungan (selimut atau permukaan bidang). Bangun sisi lengkung ada 3, yaitu tabung, kerucut, dan bola.

Dalam geometri, tabung atau silinder adalah bangun ruang tiga dimensi yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Tabung memiliki 3 sisi dan 2 rusuk.

Kedua lingkaran disebut sebagai alas dan tutup tabung serta persegi panjang yang menyelimutinya disebut sebagai selimut tabung.

 

Head Office

Alamat lengkap kantor pusat kami

 Jl. Telaga Murni 1, Ruko Danau Sunter Mas No. D3 & D5, Sunter Jaya, Tanjung Priok - Jakarta Utara

 (021) 2265 2392/94 ext 100 WA 0878 8361 3000

 Fax. (021) 6531 3626

Our Testimonial

Apa kata mereka tentang seratus institute

seratusinstitute.com adalah suatu website yang sangat bermanfaat terutama buat kami para pelajar karena dapat belajar matematika, fisika, kimia dimanapun dan kapanpun. Juga karena terdapat video belajar yang dapat dilihat berulang-ulang sehingga kami dapat mengingat pelajaran dengan baik

Raisa Riupassa

Kelas 10 - SMA Santa Ursula, Bsd

Our Social Media

Gabung dan ikuti social media kami

TOP